Associations between ERCC2 polymorphisms and gliomas.
نویسندگان
چکیده
Xeroderma pigmentosum complementation group D/excision repair cross-complementing in rodents 2 (ERCC2) encodes a protein that is part of the nucleotide excision repair pathway and the transcription factor IIH transcription complex. Mutations in this gene have been shown to cause three distinct clinical diseases including xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. Several ERCC2 polymorphisms, the effects of which on gene function are not known, have been described. To investigate whether constitutive sequence variations might be associated with adult onset gliomas, blood specimens from a case-control study (187 cases and 169 controls) were genotyped for seven previously described polymorphisms (R156R, I199M, H201Y, D312N, A575A, D711D, and K751Q). A novel R616C polymorphism was also identified. Cases were significantly more likely than controls to be homozygous for the silent AA variant at codon 156 (odds ratio, 2.3; 95% confidence interval, 1.3-4.2). Although this was observed for patients in each of three histological subgroups of cases, (glioblastoma multiforme, astrocytoma, and oligoastrocytoma) compared with controls, the association was strongest for patients with oligoastrocytoma (odds ratio, 3.2; 95% confidence interval, 1.1-9.5). In contrast, cases were somewhat less likely than controls to carry variants at D312N, D711D, and K751Q, but not significantly so overall or for any subgroup after adjustment for age and gender. Individuals with variant nucleotides at D312N, D711D, and K751Q were significantly more likely to carry a variant at another of those three codons and less likely to carry a variant nucleotide at R156R, regardless of case or control status. Although the pattern of association observed here is consistent with a role of ERCC2 variants in the prevention or causation of glioma, these results are also consistent with the possibility that another gene linked to ERCC2 may be involved. This seems especially so because the strongest association was observed with a silent nucleotide variation.
منابع مشابه
Associations between XRCC2 rs3218536 and ERCC2 rs13181 polymorphisms and ovarian cancer
Recent studies explored XRCC2 rs3218536 and ERCC2 rs13181 polymorphisms and ovarian cancer (OC) risk. However, the association between these two single nucleotide polymorphisms and OC risk remains conflicting. Thus, we conducted a comprehensive systematic review and meta-analysis to investigate the association. We searched the databases of PubMed, and Embase. Pooled odds ratios (ORs) and 95% co...
متن کاملComprehensive assessment of associations between ERCC2 Lys751Gln/Asp312Asn polymorphisms and risk of non- Hodgkin lymphoma.
BACKGROUND Excision repair crossing-complementing group 2 (ERCC2), also called xeroderma pigmentosum complementary group D (XPD), plays a crucial role in the nucleotide excision repair (NER) pathway. Previous epidemiological studies have reported associations between ERCC2 polymorphisms and non-Hodgkin lymphoma (NHL) risk, but the results have remained controversial. MATERIALS AND METHODS We ...
متن کاملERCC2 rs13181 polymorphism association with glioma susceptibility in a Chinese population.
We conducted a case-control study to investigate the role of ERCC2 rs13181 polymorphism in glioma development. A total of 165 patients who were histopathologically diagnosed to have gliomas and 330 controls were collected at Jiujiang First People's Hospital between July 2012 and June 2014. The ERCC2 rs13181 polymorphism was analyzed using a polymerase chain reaction -restriction fragment length...
متن کاملXRCC3 and XPD/ERCC2 single nucleotide polymorphisms and the risk of cancer: a HuGE review.
Hundreds of polymorphisms in DNA repair genes have been identified; however, for many of these polymorphisms, the impact on repair phenotype and cancer susceptibility remains uncertain. In this review, the authors focused on the x-ray repair cross-complementing protein group 3 (XRCC3) and xeroderma pigmentosum group D (XPD)/excision repair cross-complementing rodent repair deficiency (ERCC2) ge...
متن کاملPolymorphisms in the DNA repair genes XRCC1 and ERCC2, smoking, and lung cancer risk.
XRCC1 (X-ray cross-complementing group 1) and ERCC2 (excision repair cross-complementing group 2) are two major DNA repair proteins. Polymorphisms of these two genes have been associated with altered DNA repair capacity and cancer risk. We have described statistically significant interactions between the ERCC2 polymorphisms (Asp312Asn and Lys751Gln) and smoking in lung cancer risk. In this case...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology
دوره 10 4 شماره
صفحات -
تاریخ انتشار 2001